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The delay considered is assumed to be satisfying a certain stochastic characteristic.
Meantime, the delays of GRNs are described by a binary switching sequence satisfying
a conditional probability distribution. The aim of this paper is to design a state
estimator to estimate the true states of the considered GRNs through the available out-
put measurements. By using Lyapunov functional and some stochastic analysis tech-
niques, the stability criteria of the estimation error systems are obtained in the form
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Markovian jumping parameters of linear matrix inequalities under which the estimation error dynamics is globally

Time-varying delays asymptotically stable. Then, the explicit expression of the desired estimator is shown.
Finally, a numerical example is presented to show the effectiveness of the proposed
results.
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1. Introduction

It is well known that genetic regulatory networks (GRNs) have become an important new area in biological and biomed-
ical sciences and a large amount of outstanding results have been published in recent years [1-4]. Different kinds of com-
putational models have been applied to investigate the behaviors of GRNs, for example, Bayesian network models [5],
Petri net models [6], the Boolean models [7], and the differential equation models [8]. Among these models, the differential
equation model describes the rate of change of the concentrations of gene products, such as mRNAs and proteins, as contin-
uous values.

As one of the mostly investigated dynamical behaviors, the state estimation for GRNs has recently stirred increasing re-
search interest, see [9,10] and the references therein. In fact, this is a difficult issue since GRNs are complex nonlinear sys-
tems. Due to the complexity, it is often the case that only partial information about the states of the nodes is available in the
network outputs. In order to understand the GRNs better, it becomes necessary to estimate the states of the nodes through
available measurements. In [9], the robust H,, state estimation problem has been investigated for a class of discrete-time
stochastic genetic regulatory networks (GRNs) with probabilistic measurement delays. In [10], the robust H. state
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estimation problem has been investigated for a general class of uncertain discrete-time stochastic neural networks with
probabilistic measurement delays.

Recently, GRNs with time-delays in the form of differential equations have received particular research attention
[9,11-13]. The main reason lies in the fact that the parameters and the saturation functions of GRNs cannot be measured
exactly [9]. Time delays can occur inevitably in transcription, translation, and translocation processes because of the slow
reaction process. Considering that time delays is inevitable in practice, we must take this case into account.

In practice, due to component failures or repairs and sudden environmental changes, the transition from one state to the
next usually takes place in accordance with certain transition probabilities. GRNs may be subject to network mode
switching, which is determined by a Markovian chain. It should be pointed out that, there are many results on the dynamic
analysis of Markovian switching systems [14-16], In [14], the stability analysis problem is investigated for a class of
Markovian jumping genetic regulatory networks (GRNs) with mixed time delays (discrete time delays and distributed time
delays) and stochastic perturbations. In [16], the problem of parameter-dependent robust stability analysis has been studied
for uncertain Markovian jump linear systems with time-varying delay. However, there are no papers to deal with the state
estimation for stochastic genetic regulatory networks (GRNs) with random delays and Markovian jumping parameters.

Motivated by the above discussion, in this paper, we focused on the state estimation problems for Markovian jumping
stochastic genetic regulatory networks (GRNs). Our aim is to derive sufficient conditions for the addressed problem by
employing Lyapunov functional, the free-weighting approach and the stochastic analysis techniques. Then the state estimate
gains can be designed. The rest of this paper is outlined in the following way. The problem addressed is presented and some
preliminaries are briefly provided in Section 2. In Section 3, a sufficient criteria is established in terms of linear matrix in
equalities (LMIs) and the explicit expression of the estimator gains is derived. In Section 3, a numerical example is provided
to demonstrate the effectiveness of the main results obtained.

Notation: R" and R™™ denote the n-dimensional Eculidean space, and the set of n x m real matrices; the superscript “T”
stands for matrix transposition; I is the identity matrix of appropriate dimension; | - || stands for the Euclidean vector norm
or the induced matrix 2-norm as appropriate; the notation X > 0 (respectively, X > 0), for X € R™" means that the matrix X
is real symmetric positive definite (respectively, positive semi-definite). When x is a stochastic variable. For a matrix B and

two symmetric matrices A and C, [g z

] denotes a symmetric matrix, where * denotes the entries implied by symmetry.

2. System description

Consider the following genetic regulatory network with Markovian jumping parameters and time delays present in [17]:
{ m(t) = —A(r(t))m(t) + W(r(t))g(p(t — a(t)))
p(t) = =C(r(t)) + D(r(t))m(t — (1))
where A(r(t)), W(r(t)),C(r(t)),D(r(t)) are known constant matrices for a fixed system mode. The nonlinear function
g() = (28,1 (), &,V (1)), ... &, (v, (t)),)" denotes the feedback regulation of the protein on the transcription, which is

(1)

usually taken as the Hill form, i.e., g;(y;(t)) = 11’% ,hi is the Hill coefficient. ¢(t) and t(t) are the time-varying delays;

Let r(t) (t > 0) be a right-continuous Markov chain on the probability space and take values in a finite space
S ={1,2,...,N} with generator IT = (7;),, 4 given by
, , (1 + ATy)o(t) +o(ot), ifi##]
P{r(t+o(t)) = Tt:l:{ . o s
{rEHo() =IO =1 = 1 1 (m, + Amp)o(t) + o(60), if i =j

where §(t) > 0,7; > 0 is the known transition rate from i to j, if j # i while 7y = -3~ ;7;. Then, the genetic regulatory net-
works (1) could be described by the following vector form:
{ m(t) = —Aim(t) + Wig(p(t — 4(1)))

30 = —C: . (2)
p(t) = —Cip(t) + Dim(t — 7(t))

Assumption 1 [17]. Taking probability distribution of the time delays 7(t) and o (t), into account, for some given scalars t,
and o1, two sets of functions are defined as

Qr={t:7(t) € [Tm, T1)}, Q= {t:7T(t) €[T1,Tm|}

Qs ={t:0(t) €lom,01)}, Qu={t:o(t)€[o1,0um]}

7(t) for t € O T(t) for t € Oy
t) = t) =
u(®) {OforteQz () {0f0rteQ1
o(t)fort e Qs o(t)fort e Qy
t) = t) =
a1 () {OforteQ4 72() {OforteQ;
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From the definitions of the Q;,Q,, Q5 and Q4 it can be easily seen that t € ; means that the event t(t) € [t;n, T1) OCCurs,
t € Q, means that the event 7(t) € [t1, Ty] Occurs, t € Q; means that the event o(t) € [om, 01) occurs and t € 4 means that
the event o (t) € [01, om] occurs.

Therefore, the stochastic variables «(t), f(t) can be define as

l, te 1., teQs
a(t)_{o, teQy’ ﬁ(t)_{o, teQy

Assumption 2. o(t), 8(t) are Bernoulli distributed sequences with
Prob{o(t) =1} = E{a(t)} = otg, Prob{o(t) =0} =1 - E{o(t)} =1 — otp.
Prob{p(t) =1} = E{B(t)} = Bo, Prob{p(t) =0} =1 - E{B(t)} =1 - f,.
where 0 < o < 1,0 < , < 1 are constants and E{o(t)} and E{f(t)} are the expectation of u(t), f(t) respectively.

Remark 1. It should be noticed from Assumption 2 that

Efout)} = o0, E{(2(t) — 20)*} = oo(1 — %),  E{B(E)} = Bo,  EL(B(E) — Bo)*} = Bo(1 = fo)

Assumption 3. Since g(-) is a monotonically increasing function with saturation, from the definition of g(-), we can find that
g(-) satisfies the following condition

g8)@&iy) —ky) <0 (v, #0,i=1,2,....n) 3)
By Assumptions 1 and 2, the system (2) can be rewritten as

{fn(f) = —Am(t) + fOWig(p(t — 01(8))) + (1 - B(E))Wig(p(t — 02(t))) )

p(t) = —Gip(t) + ot )Dim(t = T1(6)) + (1 — o(6)) Dim(t — T2(t))
For the complexity of large-scale networks, only partial information about the gene states is available. Therefore, in order

to obtain the true states of the GRNs, we need to estimate the gene states from available measurements. Similar to Refs.
[9,18], we can assume the network measurements to be given as follows:

{Zm(t) = Mm(t)
zy(t) = Np(t)
where z,(t),z,(t) € R" are the actual measurement outputs and M,N are known constant matrices with appropriate

dimensions.
In this paper, based on the available network outputs in (5), we construct the following state estimator for the GRNs (4):

()

{n‘u ) = —Aih(t) + Kulzn(t) — 2n ()] )
p(t) = —Gp(t) + Kailzp(£) — Zp(£)]
and

Zn(t) = Min(t)

{2p<t) = Np(t) 7

where Z,(t),2,(t) € R™" are the estimations of m(t), p(t) and Ky;, K5; € R™™ is the estimate gain matrix to be designed later.
The main objective of this paper is to find suitable observer gains Ky; and K»;, so that Z,,(t) and z,(t), respectively, approach
to m(t) and p(t).
By setting the estimation error m(t) = m(t) — m(t),p(t) = p(t) — p(t) and the output errors be Zy(t) = zn(t) — Zm(t),
Zp(t) = zp(t) — 2,(t), the error dynamics of the state estimation can be obtained from (4)-(7) as follows:

{@(f) —(Ai + KuM)m(t) + p(O)Wig(p(t — 01(1))) + (1 = B(£))Wig(p(t — 0a(1))) (8)
p(t) = —(Ci + KuiN)p(t) + a()Dim(t — 71 (8)) + (1 — a(6))Dim(t — T2(1))

Remark 2. o(t) and B(t) are introduced to describe the distribution information of the random delay, from which we can
derive less conservative conditions For example, the piecewise analysis method for delayed systems has been employed in
[19,20]. Furthermore, we could use the delay-partitioning approach to further reduce conservatism of the system analysis.
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Before giving the main result, we will firstly introduce the following definition and lemmas, which will help us in deriving
the main results.

Definition 1 [21]. For a given function V : C?_—O([—‘EM, 0], R") x S, its infinitesimal operator L is defined as

L(Vn(t)) = lim %[[E(V(m +A)ne) = V()

A-0'
Lemma 1 [22]. For any vectors x,y € R", and positive definite matrix Q € R™", the following inequality holds:
2Ty <X'Qx+y'Qly

Lemma 2 [23]. &,5,; and Q are matrices with appropriate dimensions, t(t) is a function of t and 7, < t(t) < Ty, then
[(T(t) = T1)E1 + (T2 — T(1))E2] + Q< 0

if and only if the following two inequalities hold

(T2 —T1)E1+ Q<0
(T2 —T1)E2+Q <0

3. Main results

In this section, we will invest the estimation problem for the GRNs (8). A sufficient condition is established, such
that the estimation error system to be globally asymptotically stable. Then, according to the analysis results, the
schemes to design the estimator gain matrix K;; and K,; are derived in terms of the solution to certain matrix
inequalities.

Theorem 1. The system (8) is asymptotically stable for given scalars 0 < T, < T(t) < Tm,0 < o0 < 0(t) < OM, T1, 01, k, and the
estimator gain matrix Ky; and K,; in (8) if there exist positive definite matrices Q; > 0,R;; > 0,Q4; > 0,R;; >0
(iesS),Q;i>0,R;>0,Q;>0,R >0(i=23,...,6),A; =diag(’i1, A2, ..., 4n) >0 (i=1,2) and M; N;,T;,S;,V;,W;,G;, F;, M;,
N;, Ti,Si, Vi, Wi, G, F; € RS, such that the following LMIs hold:

[ Dy * * * * * ]
Dy Oy, * * * * *
O34 D3, [O2%Y * * * *
O(l;s) = | Dy (l) 0 0 Dyy * * x | <0, (I,s=1,2,34) 9)
0 D55 (s) 0 0 Dss *
0 0 O3 (]) 0 0 @
| O 0 0 D(s) O 0 @]
where
_H“—i-l;],'—‘rl;{i * * *
O = Ty, M + T + T * *
0 0 s + Ty + T, *
L T4 0 0 H44+F21+F£,-

Oy =[Ihyy 0 Ily3 Ipa], @y =diag{-2A:,-2Az}
[ D314 0 0 0 T
0 D3 Psp3 0
O3, = O3 =[A; 03,4 Ay 0y
31 0 0 B o |’ 32 =[A1 024 Ay 024]
0 0 D33 Diyy

q)33 = diag{_Q57 _QG7 _Q57 _Q67 _R57 _R67 _R57 _R67 _Q57 _Q67 _Q57 _Q67 _R5> _R67 _R57 _RG}

V310NT _\/510N»T VoM™ V/o1oMT
Dy(1) = _! Dyq(2) = _! D4q(3) = _ Dyq(4) = _1
a() [\/ES,T @ = | PO = s |0 = s




D55 (1)

Dg3(1) =

Doa(1) =

H2l

HZH

H214

(1)322

CI)323

D333

q)343
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= -\/E%T-7 ®s5(2) = -\/EW'T-, ®s,(3) = -\/%‘:/,-T-’ D5, (4) = \/E‘:/,T
| VouFT | | VoGl | | VouFT | | VoG] |
r T T T T
*/TN} wm-{m’v;} %ﬂB)—[@"”i], <1>63<4)—[m“”;}
| VouS; VonT,; VoS VonT;
VW = [ VW] gy [VIRVE] gy | VIRV
_\/EFi_ _\/EGI’_ _\/EFI'_ _\/EGI’_
@y = diag{—Qs, —Qs}, Ps5s = diag{—Rs, —Rs}, Dss = diag{—Qs, —Qg}, D77 = diag{—Rs, —Rs}
0 0 ooRyDi 0 (1-0o)RyD; O 0 0 oRyD;i 0 (1-0g)RyD; 0
00 0 O 0 0 00 0 0 0 0
00 0 O 0 0| g, |00 o o0 0 0
00 0 O 0 ol 00 0 0 0 0
00 0 O 0 0 00 0 0 0 0
00 0 O 0 0 00 0 0 0 0
Iy, = diag{Y;,-Q5,0,-Q3,0,—Q4}, Ty, = diag{Y,,—R,,0,—R3,0,—R4}
Mss = diag{Y;,—Q,,0,—-Q3,0,—Q,}, Tlu = diag{Ys,—R,,0, —Rs,0,—R4}
N
Y1 = QA — Al Qi — QuiKuM — MK1,Q]; + Q2 + Q3 + Q4 + > miQy;
N o
Yy = —RiCi - C,-TRli — RuKaiN — NTK;RH +Ry+Rs + Ry + ZﬂinU
Jj=1
N
Y; = —QuAi — ATQl, — QuKuM — M'KT.Q; + Q; + Qs + Q4 + Z”UQU
N a
Yy = —RyiCi — C{Ry; — RyKoiN — N'KJRT, + Ry + Ry + Ry + > TRy
j=1
pWiQu 00000 [ fWQ 00000
[(1-B)W'Qi 0 0 0 0 0] 2]3{(1ﬁ0)WfQ1,- 00000
—/Pod10Qs(A+KyM) 0 0 0 0 0
00 kAy 0 0 0] —/BoouQs(Ai+KyM) 0 0 0 0 0
00 0 0 kA 0}’ T /T = Bo)or0Qs(Ai+KuM) 0 0 0 0 0
—/0 = B)o1Qs(Ai +KuM) 0 0 0 0 0
—V/0go0Rs(Ci+KxN) 0 0 0 0 O
V0o 1Rs(Ci+KxN) 0 0 0 0 0
— /(T =0)20Rs(Ci + KxN) 0 0 0 0 0
| /(T = 0)51Rs(Ci+KzN) 0 0 0 0 0
[0 0 +/ogdRsD; 0O 0 0
0 0 +0gdsiRsD; O 0 0
00 0 0 /(T—)oRsD;i 0
00 0 0 /(T 00)dsRsD; O
[ —V/Bod10QsAi 0 0 0 0 0 —V0igdRsC; 0 0 0 0
~VBo511QsAi 0 0 0 0 0. | —V%PuRCG 0 0 0 0
/T Fo)o0QsA 0 0 0 0 0| 7 | =/ (T-00)0RsC; 0 0 0 0
|-/ (T =PBo)o1QeA 0 0 0 0 0O —/(T=)621RsC; 0 0 0 0
[0 0 \apdeRsD; O 0 0
0 0 aduRsD; 0 0 0
00 0 0 /T 00)dnRsD; 0
00 0 0 /(1—)onRsD;i 0

o ©O © O

2483
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V/Bod10QsW; 0 V/Bo010QsW; 0
A — V/Bod11QsW; 0 . V/Bod11Qs Wi 0
0 VI = B)o10Qs Wi | 0 V(1= B)d10QsW;
0 V(1 = Bo)o11QsW; 0 V1 = Bo)o1QsW;

Li=[0 M; -Mi+N; -N;+T; -T;+5 -S]

Ty=[0 V; —Vi+W; -Wi+G -G +F -F]

Iri=[0 M; —-M;+N; —Ni+T; -Ti+S -Si]

Iy = [0 Vi -Vi+W; -W;+G -G +F; —Fi]

0N =Tu—Tm010=T1—Tm,011 =Ty — T1,02 = Oy — O, 020 = O1 — Oy, 021 = Oy — O71.

Proof. Choose the following Lyapunov function for system (7):
V(t) = Vi(t) + Va(t) + V3(t)

where

t

(
/ 0ms)ds [ ms)Qms)ds + [ ms)ame)ds + [ 5(s)Rap(s)ds

t-1q t-1y t—Om

+/ f)T(S)R3ﬁ(S)dS+/[ ﬁT(S)R4ﬁ(S)dS+/[ mT(s)sz(s)der/t m’(s)Q;m(s)ds

Vi () =m"(t)Qu (r(£))m(t) + p'(O)Ry (r(£))P(t) + m' (£)Q, (r(£))m(t) + pT ()R (r(£))p(0)

(5)Q4m(s) ds+/ pT(s)Rap(s ds+/ pT(S)Rsp(s ds+/ pT(s)R4p(s)ds

J’_

V3(t) = " m dvds+/ /m dvds+/ /p v)Rsp(v)dvds
t-ty Js t—0q

t-7q s s

t-14
/ [9 v)Rsp(v)dvds + /m v)Qsm(v) dvds—i-/ /m v)Qem(v)dvds
t-oy Js =7 S

t—om [
/ /p V)Rsp(v dvd5+/ /p v)Rsp(v)duvds
t t

Taking the time derivative of V(t) along the trajectory of system (8), and taking expectation on it, we have

t—Tm

_l’_

E{LV1(t)} = 2m" ()Qui[—(Ai + KuM)m(t) + BoWig(p(t — a1 (t))) + (1 — Bo)Wig(p(t — 02(1)))]
+ ZTCU (OQum(t) + 2p" (ORui[~(Ci + KziN)p(£) + ooDim(t — 71 (t)) + (1 — o) Dim(t — T2(t))]
+ Zﬂup ORyp(t) + 2m" (6)Qy[—Am(t) + fWig(p(t — 01(1))) + (1 — Bo)Wig(p(t — 02(t)))]

Z”u (H)Qym(t) + 2p" (HRu[-Cip(t) + oDim(t — T1(t)) + (1 — o) Dim(t — Ta(t))]

+ ZTEUP t)Ryp(t)

E{LV,(t)} = ﬁ‘lT(t) [Qz +Q3+ Q4} (t) + ( )[Rz +Rs +R4]p( ) — ﬁ‘lT(t — ‘Cm)Qzﬁ‘l(t —Tm) — 7T(t — ‘EM)Q4ﬁl(
—Tn) — M (t — 71)Qsm(t — T1) — P (t — Om)ReP(t — Om) — D' (t — Op)RaP(t — ou) — ' (t — 01)Rsp(t
—01) +m'(£)[Qy + Qs + QqJm(t) + p"(t)[R2 + Rs + Ra]p(t) — m' (t — Tpy)Qym(t — Tpy) —m' (t

)+
—11)Qsm(t — T1) —m' (t — Ty)Qam(t — Ty) — p'(t — Om)Rep(t — Gm) — P (t — 01)Rsp(t — 07)
—p'(t — Om)Rap(t — Om)

(11)

(12)
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E{LV5(t)} = m"(t) [010Qs + 611Qs]Mm(t) + P'(t) [020Rs + 021Rs](t) + 1" (£)[310Qs5 + 511Qe]r1(t)

(Of0uRs + duiRelp(©) [ T (5)Qsi(s)ds — / T (5)Qri(s)ds — / " B (s)Rsp(s)ds

- / T (s)Rep(s)ds — / T (5)Qsri(s)ds — / il (5)Qgrm(s)ds — / BT (9)Rsp(s)ds
t—oy t-1¢ t—Ty ()
- [ eRepisids (13)

Notice that

E{£[m" (t)Qm(t)] } = Bo[—(Ai + KuM)m(t) + Wig(p(t — 1(1)))]" Q= (A + KuM)m(t) + Wig(p(t — 1(1)))] + (1
— $0)©7Q0, (14)

E{L[p"(ORP(1)]} = o[~ (Ci + KaiN)P(t) + Dym(t — 71 (6))]" RI=(Ci + KaN)P(t) + Dim(t — T1(£))] + (1 — %) ©;RO;  (15)

E{L[m()Qrm(t)] } = fo[-Am(t) + Wig(p(t — 01 (6)))]" Q[-Am(t) + Wig(p(t — 1 (t)))] + (1
— Bo)[—Am(t) + Wig(p(t — 02(1)))] Q[-Am(t) + Wig(p(t - 02(1)))] (16)

E{L[P"(RP(1)] } = ato[—Cip(t) + Dim(t — 71 (6))]'R[=Cip(t) + Dim(t — 74 (t))] + (1
— 0)[~Cip(t) + Dm(t — T(t))]'R[-Cip(t) + Dim(t — 2(t))] (17)
where Q = 610Q5 + 611Q6, R = 620Rs + 521Rs,Q = 610Qs + 611Qg, R = 620Rs + 321Rs, © = —(A; + KiiM)m(t) + Wig(p(t — 02 (t))),

@2 = —(Ci =+ Ksz)f)(r) =+ D,-m(t — Tz(t)).
Then, by employing free weight matrix method [24,25], we have

28T (OM; | M(t — ) — M(E — T1(£)) — /:(t) fn(s)ds- -0 (18)
2210 [m(e ) - mie ) - [ Ciitsias| <o (19)
ZZﬁ(t)Ti_ Mt — T1) — Mt — T (t /tt i } ~0 (20)
2805 [-m(t ~0a(0) - e~ ) / is)as| =0 1)
2850 p(t — o) Bt - 0118 - /() b(s)ds] - (22)
224(0W[p(e - 1(0) - pie ) - [ “hisias| =0 23)
280G {(r ~ 1) (- 03(0)) - /:J:;:b(s)ds} -0 24)
2E0)F p(e - 02(6) - p(t - o) - ” pisjas| o (25)
28 (OM {m(r ~ ) -m(e-m(0) - [ () in(syds| =0 (26)
28 (O (e 7,(0) ~ m(e - 1) — / Viitsias| <o (7)
24 (00T, {m(t ) - (e Ta(0) - /() m(s)ds} 0 (28)
24105 m(e ~ea0) - mie— ) - [ iioas] <0 (29)
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285V |plt = o) (e~ 01(0) ~ [ ()p s)ds] -0 (30)
2330w ot - ov(0) -t — oy~ [ pisws] - B1)
24006 ot o) - pit - a0 - [ p(s)ds} =0 (32)
230(OR [ - 0:0) ~pie—aw — [ pioas] <0 33
where

O = [M(©) m(e-t0) W(E-T1(0) M(E-71) MW(E-T(0) W)
O =00 PE-0w) Plt-0i(t) Ple-00) Pe-00) pE-ow]
Sy =[mi(t) mi(t—7t,) mi(t—1y(t) mi(t—1y) ml(t—1a(t) ml(t—1m)]

10 =[P Pe-—ow) PE-ar1(0) PE-0) pe-0x(e) pie—om)]

On the other hand, by sector condition (3), it follows that

-2g" (p(t - (1)) Aig(p(t — 0i(1))) + 2kg' (p(t — Gi()) Aip(¢ — Gi(t)) > O (34)

where A; = diag(Ji, Ziz, - -, Ain) > 0
From (11)-(34) and by Lemma 1, we can easily obtain that

q)ll
(1)21 (DZZ
+E{L[PT(ORP(D)] } + (T1(8) — Tm)ET(OMQ5 M E (1) + (T1 — T1())E (NiQ5 "N & (t)

ELV(O) =0 (0)+ E{C [T (O0Qm(®)]} + E{L[5 (ORD(O)]} + BT (6)Qm()] )

+(Ta(t) = T)E (OT, Q* TTa(r) (tn — T2()E(6)SiQ5"S &1 (1) + (01 () — Tm) S (OViRS V] & (1)
+ (01— 01()EOWRS W] & (8) + (02(t) — 01)E()GiRg G &a(1) + (0 — 02(8)) E(D)FiRg ' F &5(£)
+(Tl()*fm)éf(t)MQ5M€1(t) + (T = T () E(ONQ N & (1) + (Ta(t) — T)E] (OTiQg ' T &4 (8)
+ (= T2(0)E] (0SiQ5 'S E1(8) + (01 () = Tm) G (ViR VI &(8) + (01 — 01 () (WiRs W] (1)
+(02(t) = 1) E(OGRs ' G &(1) + (0w — 02(8)) & (OFRs ' Fi &5(t) (35)

where I'(t) = [£](t) &(t) g"(p(t—ou(t) gT(p(t — 62(t))]"-
Subsequently, by Lemma 2 and the well-known Schur complement, from (9), we can conclude that

E{LV(t)} <O (36)
Then, by Lyapunov stability theory, the system (8) is globally asymptotic stable.

Remark 3. As mentioned in the Introduction section, GRNs have received a great deal of attention, and many results on
the topic have been available. However, the methods cannot be applied to state estimation problem with randomly occur-
ring probability distribution of the time delays. Instead of only one variable, there are two variables in the GRNs (8), which
increase the difficulty and take us great effort. After some rigorous and complex deducing process, the criteria are
obtained which are used to guaranteed the dynamics of the estimation error system (8) globally asymptotic stable in
the mean square.

Based on Theorem 1, we are now in a position to design the state estimator for the complex networks (1). The following
Theorem 2 gives the explicit expression of the estimator gain matrix Ky; and Ky (i € S).

Theorem 2. For given scalars 0 < T < T(t) < Ty, 0 < 0 < 0(t) < OM, 71,01, k, &(i = 1,2,3,4), the augmented system (8)
is exponentially stable, if  there exist positive definite matrices Qi >0 ,R1i>0,Q4; >0,R;; >0

(i€S),Qi>0,R;>0,Q;>0,R >0(i=2,3,...,6),A; = diag(ii1, Az, ..., %n) >0 (i=1,2) and M; N;,T;,S;, Vi, W;, Gy, Fi, M,
N;, Ti,Si, Vi, Wi, G, F; € RS*1 satisfying the following LMIs hold:
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[ ®y; * * * * x|
Dy [O%) * * * * *
B D3 D3, D33 * * * *
q)(las) = (D4l(l) 0 0 (D44 * * * < 07 (l,S: 1727374)
0 CD52(S) 0 0 (D55 * *
0 0 (D63(l) 0 0 (1)66 *
| 0 0 0 Dy(s) 0 0 Dy
where
[Ty + Ty + T * * *
& 115, ﬁzz-‘—fzt-ﬁ-l——;i * *
e 0 0 M3 + Ty + T, %
i Iy 0 0 My + Ty + T
[ D34 0 0 0
= 0 @3 B33 O = X
Py = D35 = A105,4A,0,,
31 0 0 @y 0 32 1022442024
L 0 0 D33 D3y
®33 = diag{=,,E;, —Qs, —Qs, —Qs, —Qs, —Rs, —Rs, —Rs, —Rs }

—
=)

=1
=

[y

>

= lag{ 281 Qll + &1 Q57 *282Q11 + 82Q67 281Q11 + &7 Q57 *282Q11 + 82Q6}
= diag{— —2&Ryi + 33R5, —2&4Ryi + 34R6 —2&3Ryi + 33R5, —2&e4Ryi + 84R5}

1= dlag{Tl, *Q2~,07 *Q370, *Q4}7H22 = dlag{Yz, *R2,07 *R3707 *R4}

N
=—QuAi - A Qi - YuM -M'Y];+ Q2+ Qs + Qu + >_m;Qy

=
N
Yy = —RiCi — C/Ry — YaiN — N'YL, + Ry + Ry + Ry + > miRy
=
Y ﬁoélOQh‘Ai — v/ Poo10Y1iM 00 O0O0UD O
By — f\/ﬁob‘”?nA,’ — v/ Poo11Y1iM 00 O0O0OTO
(1 = Bo)o10QuiAi — /(1 — fp)d10YsM 0 0 0 O O
(1= B)011QuA — /(A = pg)oy YuM) 0 0 0 0 O
[ —V/%0020R1iCi — V0lod20Y2iN 0 00O00O
_ — /0021 R1iC;i — /2021 YoiN 00 0O0O
B3y =
\/ 1 — o) d20R1iCi — \/ (1 —0p)oYsN O O O 0 O
/A~ %55 RiCi — /T )65 YN 0 0 0 0 0
0 0 \ogonRiD; 0 0 0 V/Bo010Q1iW.
By — 0 0 odyRiD; 0 0 ) 0 A = V/Bod11QiiW,
00 0 0 \/(TtmR]jDi o’ 0
00 0 0 WR”D,‘ 0 0
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(37)

o

(1= Bo)d10QuW,
V(A = Bo)d1 QuW;

and the other symbols are defined in Theorem 1. Moreover, if (37) is true, the desired state estimator gain in (8) can be deter-

mined by

Kii = Q' Y11, K2 = R Y.

Proof. Combining (9) and (35) and applying Schur complement, we can obtain

Y1 * * * * * *

Dy (O * * * * *

¥, 3, Wiy * * * *
Y(ls)=|Oou) O 0  ®w s+ x x| <0 (s=1,234)

0 D5, (s) 0 0 Dss = *

0 0 D3 (1) 0 0 O =

L O 0 0 Dyu(s) O 0 @y

(38)
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where

\Pll =

li"3}1 =

5=l

[xn [n
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-Qn +l;1,'+1;{i * * *
Iy, Qp + Ty + T, * *
0 0 s + Ty + T, %
L Iy, 0 0 Mys + Dy + T
RET 0 0 0
0 Wi @33 O
0 0 d333 0
L O 0 @33 Dy

33 = diag{él,iz, —Qs,—Qs,—Qs,—Qg,—Rs5, —Rs, —Rs, —Rs}
1 = diag{—0Q1;05'Q1;, —Q1iQ5' Q1i, —Q1iQ5'Q1i, —Q1:Q5'Q1s}
> = diag{—R:iR5 "Ry, —R1iRg" Rii, —R1iR5 'R, —R1iRg 'Rui}

Qi1 = diag{Qy1,-Q2,0,-Q3,0,—Qa}, 0 = diag{Qys, —R,0,-R3,0, —R4}

N
Qv = -QuiAi —A,TQU - QuKuM - MTK{,‘QH +Q2+Q3+Q4+ Znilej

=

N
Qs = —RiiCi — C{Ryi — RyiKoiN — N'K3Ryi + Ry + Rs + Ry + ) "Ry,

30

=
—/Bo610QuiAi — v/Byd10Q1iK1iM 0 00O0O
N7 —v/Bod11Q1iAi — /Bod11 QuiK1iM 000O00TU
311 = _ _
—/(1 = By)d10Q1iAi — /(1T = By)310Q1:KiM 0 0 0 0 O
L —/ (1 = B)011QuiAi — /(1 = )011QuiKyM 0 0 0 0 0
[ —V/0gS20R1iCi — V00520 2iN 00O0O0OO
P — —V00021R1iCi — V00521 Y2iN 0 0O0O0OO
27 T~ a0)000RuCi — /(T —%)o20YsN 0 0 0 0 0
_—\/(1—050)5211_2”(:1-— (1—0(0)521Y2,’N 00 0O0UO O
and the other symbols are defined in Theorem 2.
Due to
2
1.9 |
18 |
17 |
16 |
3
S15 |
1.4 |
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1.1 |
1
0 5 10 15 20 25
Time (s)

Fig. 1. The probabilities of switching between modes.



J. Liu et al. /Commun Nonlinear Sci Numer Simulat 19 (2014) 2479-2492

0.8

0.7 |-

0.5 |

Amplitude

0.4 (
0.3

0.2 it

0.1
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Time(s)

Fig. 2. State trajectory m(t) in (4).

30

2489

Substituting —Q1iQ5' Qui, —Q1iQs" Qui, —R1iRs'Ryi and —RyiRg'Ry; with —2&,Qui + 61Qs, —28,Qu; + £3Qs, —2€3Ry; + &3R5 and
—2¢&4Ry; + €3Rs into (38), respectively, we obtain

I \P” *
(1)21 (D22

\P(l,s) = (D4] (l) 0 0
0 (1)52(5) 0
0 0 ()
L0 0 0
0.7
0.6F
E-
<

*

*

LIJ3] d)32 &)33

* * * *
* * * *
* * * *
Dyy * * « | <0, (I,s=1,2,3,4)
0 Q55 % *
0 0 dg =
Dy4(s) O 0 @]
5 1‘0 1‘5 éo 2‘5 30

Time (s)

Fig. 3. State trajectory p(t) in (4).
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Fig. 4. State estimator m(t) in (6).

Denoting Yq; = Q1;K1i, Yai = RyiKo;, then Eq. (37) can be obtained. Furthermore, the explicit expression of the desired state

estimator gain matrix is Ky; = Q7' Y1, Ko = Ry} Yai.

4. Simulation examples

In this section, we present an example to illustrate the effectiveness of the state estimator for the Markovian jumping
genetic networks with time-varying delays.

Consider the following uncertain Markovian genetic regulatory networks (8) with two modes [17]:
10 1 -2 2 0 10
! {0 1}’ ! {0.8 0}’ ! {0 2}’ ! {0 1]’

wefo o) e[V o) e ool pefo ]
M=[-1 2], N=[-1 1]

In this example, the regulation function is taken as g(x) = 1«% one can get k = 0.65. The time-varying delays are assumed to
be 7,=02,7y=3.8525,7,=0.5, 61 =03,0,, =0.1,0y =0.5. The transmission probability is assumed to be

-3 3
n-[7 3]
Set g = 0.2, 4, = 0.7,e; = 1;e, = 1. Then, combine (37) and K;; = Q7' Y1;, K2 = R;}'Y;, the desired estimator parameters
can be designed as

1.2468 1.1427 —1.1452 -1.0148
K1 = Ky = Ky = Ky = 40
n [1.3479}’ 2 [1.7902}’ 2 { 1.1136 ] 2 [ 1.2103} (40)
Choose the initial conditions m(0) = m(0) = {85], p(0) =p(0) = {8;} the probabilities of switching between modes

can be seen from Figs. 1. The state trajectory m(t) and p(t) are shown in Figs. 2 and 3, respectively. The State estimator
m(t) and p(t) are shown in Figs. 4 and 5, respectively. The output errors zn(t) and z,(t) are shown in Figs. 6 and 7, respec-
tively. From Figs. 6 and 7, we can see the designed state estimator performs well.

0.7

0.6“—
0.51‘

|
04

0.3H

Amplitude

0.2+

0.1

5 10 15 20 25 30
Time (s)

Fig. 5. State estimator p(t) in (6).
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-12} 1

_1 4 n L L L L
0 5 10 15 20 25 30
Time (s)

Fig. 6. Estimation error trajectory zp(t).

Amplitude

5 10 15 20 25 30
Time (s)

Fig. 7. Estimation error trajectory z,(t).

5. Conclusion

In this paper, we have studied the state estimation problem of a Markovian jumping genetic networks with time-varying
delays. By using the free-weighting matrix method and the LMI techniques, stability conditions have been developed in
terms of LMIs which guarantee the estimation error dynamics to be asymptotically stable. Then,the explicit expression of
the desired estimate gains are shown. Finally, a numerical example is given to demonstrate the effectiveness of the proposed
designed method.
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